

Test Date: September 6th, 2023

embk.me/relentlessbdsbreathofthewildrico

BREED ANCESTRY

German Shorthaired Pointer : 100.0%

GENETIC STATS

Predicted adult weight: **63 lbs** Life stage: **Young adult** Based on your dog's date of birth provided.

TEST DETAILS

Kit number: EM-58761874 Swab number: 31220611904419

Fun Fact

The German Shorthair is a versatile hunting dog who can not only point birds, but also hunt rabbits and raccoons, trail deer, and retrieve on land or from water. Test Date: September 6th, 2023

embk.me/relentlessbdsbreathofthewildrico

GERMAN SHORTHAIRED POINTER

The German Shorthaired Pointer is an early example of fine German engineering. Besides being a super hunting dog, the German Shorthair is a standout in the show ring: two German Shorthairs have taken Best in Show at Westminster Kennel Club. German Shorthaired Pointers are an all-purpose close-working gun dog with agility, power and endurance. This hunting dog was bred to do it all, including being an attentive, family-loving companion and a watchdog for the property. Few breeds are more versatile -- and more demanding of their owners' energy and attention. Big, strong and enthusiastic, this breed needs to be taught how to behave around the children and socialized from a youn gage. They may also need to be trained not to "hunt" the family cat or other small pets. As a high-energy dog, they require at least an hour of exercise daily. Without this, they may become nervous and destructive. GSPs are also people-oriented, and don't like to be left alone for long periods of time without something to keep them busy. Build at least a six-foot tall fence if you plan to leave them alone outside to prevent their inner escape-artist. Sometimes known for barking at strangers and noises, they can be protective, especially females with litter puppies.

Test Date: September 6th, 2023

embk.me/relentlessbdsbreathofthewildrico

MATERNAL LINE

Through Rico's mitochondrial DNA we can trace his mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1d

This female lineage can be traced back about 15,000 years to some of the original Central Asian wolves that were domesticated into modern dogs. The early females that represent this lineage were likely taken into Eurasia, where they spread rapidly. As a result, many modern breed and village dogs from the Americas, Africa, through Asia and down into Oceania belong to this group! This widespread lineage is not limited to a select few breeds, but the majority of Rottweilers, Afghan Hounds and Wirehaired Pointing Griffons belong to it. It is also the most common female lineage among Papillons, Samoyeds and Jack Russell Terriers. Considering its occurrence in breeds as diverse as Afghan Hounds and Samoyeds, some of this is likely ancient variation. But because of its presence in many modern European breeds, much of its diversity likely can be attributed to much more recent breeding.

HAPLOTYPE: A466

Part of the A1d haplogroup, the A466 haplotype occurs most commonly in African Village Dogs. It's a rare find!

Test Date: September 6th, 2023

embk.me/relentlessbdsbreathofthewildrico

PATERNAL LINE

Through Rico's Y chromosome we can trace his father's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1a

Some of the wolves that became the original dogs in Central Asia around 15,000 years ago came from this long and distinguished line of male dogs. After domestication, they followed their humans from Asia to Europe and then didn't stop there. They took root in Europe, eventually becoming the dogs that founded the Vizsla breed 1,000 years ago. The Vizsla is a Central European hunting dog, and all male Vizslas descend from this line. During the Age of Exploration, like their owners, these pooches went by the philosophy, "Have sail, will travel!" From the windy plains of Patagonia to the snug and homey towns of the American Midwest, the beaches of a Pacific paradise, and the broad expanse of the Australian outback, these dogs followed their masters to the outposts of empires. Whether through good fortune or superior genetics, dogs from the A1a lineage traveled the globe and took root across the world. Now you find village dogs from this line frolicking on Polynesian beaches, hanging out in villages across the **Registration: American Kennel Club**

HAPLOTYPE: H1a.18

Part of the large A1a haplogroup, this haplotype occurs in village dogs in Turkey. Among breeds, it is most commonly seen in German Shorthaired Pointer, Wirehaired Pointing Griffon, and English Bulldog.

Test Date: September 6th, 2023

embk.me/relentlessbdsbreathofthewildrico

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** allele do not produce dark hairs at all, and will be "red" over their entire body. The shade of red, which can range from a deep copper to yellow/gold to cream, is dependent on other genetic factors including the Intensity loci. In addition to determining if a dog can develop dark hairs at all, the E Locus can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of the **Em** allele usually have a melanistic mask (dark facial hair as commonly seen in the German Shepherd and Pug). Dogs with no copies of **Em** but one or two copies of the **Eg** allele usually have a melanistic "widow's peak" (dark forehead hair as commonly seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino").

K Locus (CBD103)

The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are ee at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the $k^{y}k^{y}$ genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as $K^{B}k^{y}$ may be brindle rather than black or brown.

More likely to have a mostly solid black or brown coat (K^BK^B)

No dark mask or grizzle (EE)

RESULT

Test Date: September 6th, 2023

embk.me/relentlessbdsbreathofthewildrico

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

No impact on coat pattern (Intermediate Red Pigmentation)

RESULT

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

D Locus (MLPH)

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Not expressed (ata)

Dark areas of hair and skin are not lightened (DD)

Test Date: September 6th, 2023

embk.me/relentlessbdsbreathofthewildrico

TRAITS: COAT COLOR (CONTINUED)

TRAIT RESULT Cocoa (HPS3) Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin. No co alleles, not Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** allele on to their puppies. expressed (NN) Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brown than dogs that have the **Bb** or **BB** genotypes at the B locus. **B Locus (TYRP1)** Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Brown hair and skin Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. (bb) E Locus ee dogs that carry two b alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red". Saddle Tan (RALY)

The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the **II** genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus **a**^t allele, so dogs that do not express **a**^t are not influenced by this gene.

Not expressed (II)

S Locus (MITF)

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely flash, parti, piebald, or extreme white (spsp)

Test Date: September 6th, 2023

embk.me/relentlessbdsbreathofthewildrico

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "nonexpressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to be phenotypically merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A)

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely no impact on coat pattern (rr)

No merle alleles (mm)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

Test Date: September 6th, 2023

embk.me/relentlessbdsbreathofthewildrico

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings (RSPO2)

Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two **I** alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Likely unfurnished (no mustache, beard, and/or eyebrows) (II)

RESULT

Test Date: September 6th, 2023

embk.me/relentlessbdsbreathofthewildrico

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Coat Length (FGF5)

The FGF5 gene affects hair length in many species, including cats, dogs, mice, and humans. In dogs, an **Lh** allele confers a long, silky hair coat across many breeds, including Yorkshire Terriers, Cocker Spaniels, and Golden Retrievers, while the **Sh** allele causes a shorter coat, as seen in the Boxer or the American Staffordshire Terrier. In certain breeds, such as the Pembroke Welsh Corgi and French Bulldog, the long haircoat is described as "fluffy". The coat length determined by FGF5, as reported by us, is influenced by four genetic variants that work together to promote long hair.

The most common of these is the **Lh1** variant (G/T, CanFam3.1, chr32, g.4509367) and the less common ones are **Lh2** (C/T, CanFam3.1, chr32, g.4528639), **Lh3** (16bp deletion, CanFam3.1, chr32, g.4528616), and **Lh4** (GG insertion, CanFam3.1, chr32, g.4528621). The FGF5_Lh1 variant is found across many dog breeds. The less common alleles, FGF5_Lh2, have been found in the Akita, Samoyed, and Siberian Husky, FGF5_Lh3 have been found in the Eurasier, and FGF5_Lh4 have been found in the Afghan Hound, Eurasier, and French Bulldog.

The **Lh** alleles have a recessive mode of inheritance, meaning that two copies of the **Lh** alleles are required to have long hair. The presence of two Lh alleles at any of these FGF5 loci is expected to result in long hair. One copy each of **Lh1** and **Lh2** have been found in Samoyeds, one copy each of **Lh1** and **Lh3** have been found in Eurasiers, and one copy each of **Lh1** and **Lh4** have been found in the Afghan Hounds and Eurasiers.

Interestingly, the Lh3 variant, a 16 base pair deletion, encompasses the Lh4 variant (GG insertion). The presence of one or two copies of Lh3 influences the outcome at the Lh4 locus. When two copies of Lh3 are present, there will be no reportable result for the FGF5_Lh4 locus. With one copy of Lh3, Lh4 can have either one copy of the variant allele or the normal allele. The overall FGF5 result remains unaffected by this.

Likely short or midlength coat (ShSh)

Test Date: September 6th, 2023

embk.me/relentlessbdsbreathofthewildrico

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Shedding (MC5R)

Dogs with at least one copy of the ancestral **C** allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with two copies of the **T** allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2 (the furnishings gene) tend to be low shedders regardless of their genotype at this gene. Likely light shedding (TT)

RESULT

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats.

Likely straight coat (CC)

Hairlessness (FOXI3)

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth
 shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and
 Chinese Crested (other hairless breeds have different mutations). Dogs with the NDup genotype are likely
 to be hairless while dogs with the NN genotype are likely to have a normal coat. The DupDup genotype has
 never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that
 this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** variant on to their offspring.

Very unlikely to be hairless (NN)

Test Date: September 6th, 2023

embk.me/relentlessbdsbreathofthewildrico

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Oculocutaneous Albinism Type 2 (SLC45A2)

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Likely not albino (NN)

RESULT

Test Date: September 6th, 2023

embk.me/relentlessbdsbreathofthewildrico

RESULT

Likely medium or long

muzzle (CC)

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Unlikely to have hind dew claws (CC)

Likely normal-length

tail (CC)

Test Date: September 6th, 2023

embk.me/relentlessbdsbreathofthewildrico

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Blue Eye Color (ALX4)

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Back Muscling & Bulk, Large Breed (ACSL4)

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (CC)

RESULT

Less likely to have blue

eyes (NN)

Registration:

DNA Test Report	Test Date: September 6th, 2023	embk.me/relentlessbdsbreathofthewildrico
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1)		Larger (NN)
The I allele is associated with smaller body size.		
Body Size (IGFR1)		Larger (GG)
The A allele is associated with smaller body size.		
Body Size (STC2)		Larger (TT)
The A allele is associated with smaller body size.		
Body Size (GHR - E191K)		Larger (GG)
The A allele is associated with smaller body size.		
Body Size (GHR - P177L)		Larger (CC)
The T allele is associated with smaller body size.		

embk.me/relentlessbdsbreathofthewildrico

 TRAITS: PERFORMANCE
 RESULT

 TRAIT
 RESULT

 Altitude Adaptation (EPAS1)
 Normal altitude descenses dogs to be especially tolerant of low oxygen environments (hypoxia), such as those found at high elevations. Dogs with at least one A allele are less susceptible to "altitude sickness." This mutation was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.

Test Date: September 6th, 2023

Appetite (POMC)

DNA Test Report

This mutation in the POMC gene is found primarily in Labrador and Flat Coated Retrievers. Compared to
dogs with no copies of the mutation (NN), dogs with one (ND) or two (DD) copies of the mutation are more
likely to have high food motivation, which can cause them to eat excessively, have higher body fat
percentage, and be more prone to obesity. Read more about the genetics of POMC, and learn how you can
contribute to research, in our blog post (https://embarkvet.com/resources/blog/pomc-dogs/). We
measure this result using a linkage test.Normal food
motivation (NN)

Test Date: September 6th, 2023

embk.me/relentlessbdsbreathofthewildrico

HEALTH REPORT

How to interpret Rico's genetic health results:

If Rico inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Rico for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Rico is not at increased risk for the genetic health conditions that Embark tests.

Clear results

Breed-relevant (4)

Other (251)

Test Date: September 6th, 2023

embk.me/relentlessbdsbreathofthewildrico

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Rico, and may influence his chances of developing certain health conditions.

Acral Mutilation Syndrome (GDNF-AS, Spaniel	and Pointer Variant)	Clear
Oay Blindness (CNGB3 Exon 6, German Shorth	haired Pointer Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN	8, Australian Shepherd Variant)	Clear
⊘ Von Willebrand Disease Type II, Type II vWD (\	VWF, Pointer Variant)	Clear
Registration: American Kennel Club (AKC)	Rembark	

SS40109307

Kembark

Test Date: September 6th, 2023

embk.me/relentlessbdsbreathofthewildrico

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Rico. Review any increased risk or notable results to understand his potential risk and recommendations.

\oslash	2-DHA Kidney & Bladder Stones (APRT)	Clear
\oslash	Alaskan Husky Encephalopathy (SLC19A3)	Clear
\oslash	Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
\oslash	Alexander Disease (GFAP)	Clear
\oslash	ALT Activity (GPT)	Clear
\oslash	Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
\oslash	Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
\oslash	Bald Thigh Syndrome (IGFBP5)	Clear
\oslash	Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
\oslash	Bully Whippet Syndrome (MSTN)	Clear
\oslash	Canine Elliptocytosis (SPTB Exon 30)	Clear
\oslash	Canine Fucosidosis (FUCA1)	Clear
\oslash	Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
\oslash	Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
\oslash	Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
\oslash	Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear
Ø	Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant)	Clear
\oslash	Canine Multiple System Degeneration (SERAC1 Exon 4, Chinese Crested Variant)	Clear

DNA Test Report	Test Date: September 6th, 2023	embk.me/relentlessbdsbreathofthewildri
OTHER RESULTS		
Canine Multiple System Degeneration (SEI	RAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
Cardiomyopathy and Juvenile Mortality (YA	RS2)	Clear
Centronuclear Myopathy, CNM (PTPLA)		Clear
Cerebellar Hypoplasia (VLDLR, Eurasier Va	riant)	Clear
Chondrodystrophy (ITGA10, Norwegian Elk	hound and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (ADAMTS20, N	lova Scotia Duck Tolling Retriever Variant)	Clear
Cleft Palate, CP1 (DLX6 intron 2, Nova Scot	ia Duck Tolling Retriever Variant)	Clear
Cobalamin Malabsorption (CUBN Exon 8, B	eagle Variant)	Clear
Ocobalamin Malabsorption (CUBN Exon 53,	Border Collie Variant)	Clear
Ocollie Eye Anomaly (NHEJ1)		Clear
Complement 3 Deficiency, C3 Deficiency (23)	Clear
Ocongenital Cornification Disorder (NSDHL,	Chihuahua Variant)	Clear
Ocongenital Hypothyroidism (TPO, Rat, Toy,	Hairless Terrier Variant)	Clear
Ocongenital Hypothyroidism (TPO, Tenterfie	ld Terrier Variant)	Clear
Ongenital Hypothyroidism with Goiter (TF	20 Intron 13, French Bulldog Variant)	Clear
Ocongenital Hypothyroidism with Goiter (SL	C5A5, Shih Tzu Variant)	Clear
Congenital Macrothrombocytopenia (TUBE	31 Exon 1, Cairn and Norfolk Terrier Variant)	Clear
Ocongenital Myasthenic Syndrome, CMS (C	OLQ, Labrador Retriever Variant)	Clear

DNA Test Report	Test Date: September 6th, 2023	embk.me/relentlessbdsbreathofthewildric
OTHER RESULTS		
Congenital Myasthenic Syndrome, CMS (C	COLQ, Golden Retriever Variant)	Clear
Ongenital Myasthenic Syndrome, CMS (C	CHAT, Old Danish Pointing Dog Variant)	Clear
Congenital Myasthenic Syndrome, CMS (C	CHRNE, Jack Russell Terrier Variant)	Clear
Ongenital Stationary Night Blindness (LF	RIT3, Beagle Variant)	Clear
Ongenital Stationary Night Blindness (RF	PE65, Briard Variant)	Clear
Craniomandibular Osteopathy, CMO (SLC3	37A2)	Clear
Craniomandibular Osteopathy, CMO (SLC3	37A2 Intron 16, Basset Hound Variant)	Clear
🔗 Cystinuria Type I-A (SLC3A1, Newfoundlar	nd Variant)	Clear
O Cystinuria Type II-A (SLC3A1, Australian C	attle Dog Variant)	Clear
🔗 Cystinuria Type II-B (SLC7A9, Miniature Pi	nscher Variant)	Clear
Oay Blindness (CNGB3 Deletion, Alaskan N	Malamute Variant)	Clear
Oay Blindness (CNGA3 Exon 7, German Sh	epherd Variant)	Clear
Oay Blindness (CNGA3 Exon 7, Labrador Re	etriever Variant)	Clear
O Deafness and Vestibular Syndrome of Dob	permans, DVDob, DINGS (MYO7A)	Clear
O Degenerative Myelopathy, DM (SOD1A)		Clear
Oemyelinating Polyneuropathy (SBF2/MT	RM13)	Clear
Oental-Skeletal-Retinal Anomaly (MIA3, C	ane Corso Variant)	Clear
O Diffuse Cystic Renal Dysplasia and Hepati	c Fibrosis (INPP5E Intron 9, Norwich Terrie	r Variant) Clear

DNA Test Report	Test Date: September 6th, 2023	embk.me/relentlessbdsbreathofthewildrico
OTHER RESULTS		
Oilated Cardiomyopathy, DCM (RBM2	20, Schnauzer Variant)	Clear
Oilated Cardiomyopathy, DCM1 (PDK4	4, Doberman Pinscher Variant 1)	Clear
Oilated Cardiomyopathy, DCM2 (TTN,	, Doberman Pinscher Variant 2)	Clear
Oisproportionate Dwarfism (PRKG2, D	Dogo Argentino Variant)	Clear
Ory Eye Curly Coat Syndrome (FAM83	3H Exon 5)	Clear
Oystrophic Epidermolysis Bullosa (CC	DL7A1, Central Asian Shepherd Dog Variant)	Clear
Oystrophic Epidermolysis Bullosa (CC	DL7A1, Golden Retriever Variant)	Clear
Searly Bilateral Deafness (LOXHD1 Exo	n 38, Rottweiler Variant)	Clear
Sarly Onset Adult Deafness, EOAD (EI	PS8L2 Deletion, Rhodesian Ridgeback Variant)	Clear
SEarly Onset Cerebellar Ataxia (SEL1L,	Finnish Hound Variant)	Clear
Schlers Danlos (ADAMTS2, Doberman	Pinscher Variant)	Clear
Senamel Hypoplasia (ENAM Deletion, I	Italian Greyhound Variant)	Clear
🔗 Enamel Hypoplasia (ENAM SNP, Parso	on Russell Terrier Variant)	Clear
Sepisodic Falling Syndrome (BCAN)		Clear
Service - Induced Collapse, EIC (DNN	/1)	Clear
Sector VII Deficiency (F7 Exon 5)		Clear
Sactor XI Deficiency (F11 Exon 7, Kerry	y Blue Terrier Variant)	Clear
Samilial Nephropathy (COL4A4 Exon S	3, Cocker Spaniel Variant)	Clear
Registration: American Kennel Club (AKC)	Fembark	

DNA Test Report	Test Date: September 6th, 2023	embk.me/relentlessbdsbreathofthewildric
OTHER RESULTS		
Samilial Nephropathy (COL4A4 Exon 30, E	nglish Springer Spaniel Variant)	Clear
🧭 Fanconi Syndrome (FAN1, Basenji Variant)		Clear
Setal-Onset Neonatal Neuroaxonal Dystro	phy (MFN2, Giant Schnauzer Variant)	Clear
🔗 Glanzmann's Thrombasthenia Type I (ITGA	A2B Exon 13, Great Pyrenees Variant)	Clear
🔗 Glanzmann's Thrombasthenia Type I (ITGA	A2B Exon 12, Otterhound Variant)	Clear
Globoid Cell Leukodystrophy, Krabbe dise	ase (GALC Exon 5, Terrier Variant)	Clear
Glycogen Storage Disease Type IA, Von Gi	erke Disease, GSD IA (G6PC, Maltese Varia	ant) Clear
Glycogen Storage Disease Type IIIA, GSD	IIIA (AGL, Curly Coated Retriever Variant)	Clear
 Glycogen storage disease Type VII, Phosp and English Springer Spaniel Variant) 	hofructokinase Deficiency, PFK Deficiency	(PFKM, Whippet Clear
Glycogen storage disease Type VII, Phosp Wachtelhund Variant)	hofructokinase Deficiency, PFK Deficiency	(PFKM, Clear
GM1 Gangliosidosis (GLB1 Exon 2, Portugu	uese Water Dog Variant)	Clear
🧭 GM1 Gangliosidosis (GLB1 Exon 15, Shiba	Inu Variant)	Clear
🧭 GM1 Gangliosidosis (GLB1 Exon 15, Alaska	n Husky Variant)	Clear
GM2 Gangliosidosis (HEXA, Japanese Chir	n Variant)	Clear
GM2 Gangliosidosis (HEXB, Poodle Varian	t)	Clear
Golden Retriever Progressive Retinal Atro	phy 1, GR-PRA1 (SLC4A3)	Clear
Golden Retriever Progressive Retinal Atro	phy 2, GR-PRA2 (TTC8)	Clear
Goniodysgenesis and Glaucoma, Pectinat	e Ligament Dysplasia, PLD (OLFM3)	Clear

DNA Test Report	Test Date: September 6th, 2023	embk.me/relentlessbdsbreathofthewildric
OTHER RESULTS		
🔗 Hemophilia A (F8 Exon 11, German Sheph	nerd Variant 1)	Clear
Hemophilia A (F8 Exon 1, German Shephe	erd Variant 2)	Clear
Hemophilia A (F8 Exon 10, Boxer Variant)		Clear
Hemophilia B (F9 Exon 7, Terrier Variant)		Clear
🔗 Hemophilia B (F9 Exon 7, Rhodesian Ridg	geback Variant)	Clear
Hereditary Ataxia, Cerebellar Degeneration	on (RAB24, Old English Sheepdog and Gor	rdon Setter Variant) Clear
Hereditary Cataracts (HSF4 Exon 9, Austr	alian Shepherd Variant)	Clear
Hereditary Footpad Hyperkeratosis (FAM	83G, Terrier and Kromfohrlander Variant)	Clear
Hereditary Footpad Hyperkeratosis (DSG	1, Rottweiler Variant)	Clear
Hereditary Nasal Parakeratosis (SUV39H	2 Intron 4, Greyhound Variant)	Clear
Hereditary Nasal Parakeratosis, HNPK (SU	JV39H2)	Clear
Hereditary Vitamin D-Resistant Rickets (VDR)	Clear
🔗 Hypocatalasia, Acatalasemia (CAT)		Clear
Hypomyelination and Tremors (FNIP2, We	eimaraner Variant)	Clear
Hypophosphatasia (ALPL Exon 9, Kareliar	n Bear Dog Variant)	Clear
⊘ Ichthyosis (NIPAL4, American Bulldog Va	riant)	Clear
🔗 Ichthyosis (ASPRV1 Exon 2, German She	oherd Variant)	Clear
Ichthyosis (SLC27A4, Great Dane Variant)	Clear
Registration: American Kennel Club (AKC)	X embark	

SS40109307

DNA Test Report	Test Date: September 6th, 2023	embk.me/relentlessbdsbreathofthewildr
OTHER RESULTS		
Ichthyosis, Epidermolytic Hyperkera	tosis (KRT10, Terrier Variant)	Clear
O Ichthyosis, ICH1 (PNPLA1, Golden Re	triever Variant)	Clear
Inflammatory Myopathy (SLC25A12)		Clear
Inherited Myopathy of Great Danes (BIN1)	Clear
Inherited Selected Cobalamin Malab	osorption with Proteinuria (CUBN, Komondor Varia	nt) Clear
Intervertebral Disc Disease (Type I) ((FGF4 retrogene - CFA12)	Clear
Intestinal Lipid Malabsorption (ACSL	.5, Australian Kelpie)	Clear
Junctional Epidermolysis Bullosa (LA)	AMA3 Exon 66, Australian Cattle Dog Variant)	Clear
Junctional Epidermolysis Bullosa (LA	MB3 Exon 11, Australian Shepherd Variant)	Clear
Juvenile Epilepsy (LGI2)		Clear
Juvenile Laryngeal Paralysis and Pol	yneuropathy (RAB3GAP1, Rottweiler Variant)	Clear
Juvenile Myoclonic Epilepsy (DIRAS1	1)	Clear
C L-2-Hydroxyglutaricaciduria, L2HGA	(L2HGDH, Staffordshire Bull Terrier Variant)	Clear
Lagotto Storage Disease (ATG4D)		Clear
Laryngeal Paralysis (RAPGEF6, Minia	ature Bull Terrier Variant)	Clear
Late Onset Spinocerebellar Ataxia (C	CAPN1)	Clear
Late-Onset Neuronal Ceroid Lipofuso	cinosis, NCL 12 (ATP13A2, Australian Cattle Dog Va	ariant) Clear
 Leonberger Polyneuropathy 1 (LPN1, 	ARHGEF10)	Clear
agistration: American Kennel Club (AKC)		

DNA Test Report	Test Date: September 6th, 2023	embk.me/relentlessbdsbreathofthewildrig
OTHER RESULTS		
O Leonberger Polyneuropathy 2 (GJA9)		Clear
O Lethal Acrodermatitis, LAD (MKLN1)		Clear
Leukodystrophy (TSEN54 Exon 5, Standa	ard Schnauzer Variant)	Clear
🔗 Ligneous Membranitis, LM (PLG)		Clear
C Limb Girdle Muscular Dystrophy (SGCD, I	Boston Terrier Variant)	Clear
C Limb-Girdle Muscular Dystrophy 2D (SG	CA Exon 3, Miniature Dachshund Variant)	Clear
O Long QT Syndrome (KCNQ1)		Clear
Sundehund Syndrome (LEPREL1)		Clear
Macular Corneal Dystrophy, MCD (CHST	6)	Clear
Malignant Hyperthermia (RYR1)		Clear
May-Hegglin Anomaly (MYH9)		Clear
Methemoglobinemia (CYB5R3, Pit Bull Te	errier Variant)	Clear
Methemoglobinemia (CYB5R3)		Clear
Microphthalmia (RBP4 Exon 2, Soft Coat	ed Wheaten Terrier Variant)	Clear
Mucopolysaccharidosis IIIB, Sanfilippo S	Syndrome Type B, MPS IIIB (NAGLU, Schippe	erke Variant) Clear
Mucopolysaccharidosis Type IIIA, Sanfili Variant)	ppo Syndrome Type A, MPS IIIA (SGSH Exor	n 6, Dachshund Clear
Mucopolysaccharidosis Type IIIA, Sanfili Huntaway Variant)	ppo Syndrome Type A, MPS IIIA (SGSH Exor	n 6, New Zealand Clear
Mucopolysaccharidosis Type VI, Marotea Variant)	aux-Lamy Syndrome, MPS VI (ARSB Exon 5,	Miniature Pinscher Clear

DNA Test Report	Test Date: September 6th, 2023	embk.me/relentlessbdsbreathofthewildri
OTHER RESULTS		
Mucopolysaccharidosis Type VII, S	ly Syndrome, MPS VII (GUSB Exon 3, German She	pherd Variant) Clear
Mucopolysaccharidosis Type VII, S	ly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasil	leiro Variant) Clear
Multiple Drug Sensitivity (ABCB1)		Clear
Muscular Dystrophy (DMD, Cavalier	r King Charles Spaniel Variant 1)	Clear
Muscular Dystrophy (DMD, Golden	Retriever Variant)	Clear
Musladin-Lueke Syndrome, MLS (A	DAMTSL2)	Clear
O Myasthenia Gravis-Like Syndrome	(CHRNE, Heideterrier Variant)	Clear
Myotonia Congenita (CLCN1 Exon 2	23, Australian Cattle Dog Variant)	Clear
Myotonia Congenita (CLCN1 Exon 7	7, Miniature Schnauzer Variant)	Clear
Narcolepsy (HCRTR2 Exon 1, Dachs	shund Variant)	Clear
Narcolepsy (HCRTR2 Intron 4, Dobe	erman Pinscher Variant)	Clear
Narcolepsy (HCRTR2 Intron 6, Labr	ador Retriever Variant)	Clear
Nemaline Myopathy (NEB, America	n Bulldog Variant)	Clear
Neonatal Cerebellar Cortical Deger	neration (SPTBN2, Beagle Variant)	Clear
Neonatal Encephalopathy with Sei	zures, NEWS (ATF2)	Clear
Neonatal Interstitial Lung Disease	(LAMP3)	Clear
Neuroaxonal Dystrophy, NAD (VPS1	1, Rottweiler Variant)	Clear
Neuroaxonal Dystrophy, NAD (TECF	PR2, Spanish Water Dog Variant)	Clear

DNA Test Report	Test Date: September 6th, 2023	embk.me/relentlessbdsbreathofthewildric
OTHER RESULTS		
Neuronal Ceroid Lipofuscinosis 1, NCL 1 (P	PT1 Exon 8, Dachshund Variant 1)	Clear
Neuronal Ceroid Lipofuscinosis 10, NCL 10	(CTSD Exon 5, American Bulldog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 2, NCL 2 (1	[PP1 Exon 4, Dachshund Variant 2)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Var	riant) Clear
Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 7, NCL 7 (N	IFSD8, Chihuahua and Chinese Crested Va	riant) Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (0	CLN8 Exon 2, English Setter Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (0	CLN8 Insertion, Saluki Variant)	Clear
 Neuronal Ceroid Lipofuscinosis, Cerebella Variant) 	r Ataxia, NCL4A (ARSG Exon 2, American St	taffordshire Terrier Clear
Oculocutaneous Albinism, OCA (SLC45A2	Exon 6, Bullmastiff Variant)	Clear
Oculocutaneous Albinism, OCA (SLC45A2,	Small Breed Variant)	Clear
🔗 Oculoskeletal Dysplasia 2 (COL9A2, Samo	yed Variant)	Clear
Osteochondrodysplasia (SLC13A1, Poodle	Variant)	Clear
Osteogenesis Imperfecta (COL1A2, Beagle	e Variant)	Clear
Osteogenesis Imperfecta (SERPINH1, Dac	hshund Variant)	Clear
Osteogenesis Imperfecta (COL1A1, Golder	n Retriever Variant)	Clear
P2Y12 Receptor Platelet Disorder (P2Y12)		Clear

DNA Test Report	Test Date: September 6th, 2023	embk.me/relentlessbdsbreathofthewildrico
OTHER RESULTS		
Pachyonychia Congenita (KRT16, Dogue de	e Bordeaux Variant)	Clear
Paroxysmal Dyskinesia, PxD (PIGN)		Clear
Persistent Mullerian Duct Syndrome, PMD	S (AMHR2)	Clear
Pituitary Dwarfism (POU1F1 Intron 4, Kareli	an Bear Dog Variant)	Clear
Platelet Factor X Receptor Deficiency, Sco	tt Syndrome (TMEM16F)	Clear
Polycystic Kidney Disease, PKD (PKD1)		Clear
Pompe's Disease (GAA, Finnish and Swedi	sh Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KLKB1 Exon 8)		Clear
Primary Ciliary Dyskinesia, PCD (NME5, Ala	skan Malamute Variant)	Clear
Primary Ciliary Dyskinesia, PCD (CCDC39 E	xon 3, Old English Sheepdog Variant)	Clear
Primary Hyperoxaluria (AGXT)		Clear
Primary Lens Luxation (ADAMTS17)		Clear
Primary Open Angle Glaucoma (ADAMTS17	Exon 11, Basset Fauve de Bretagne Variar	nt) Clear
Primary Open Angle Glaucoma (ADAMTS10) Exon 17, Beagle Variant)	Clear
Primary Open Angle Glaucoma (ADAMTS10) Exon 9, Norwegian Elkhound Variant)	Clear
 Primary Open Angle Glaucoma and Primary Variant) 	/ Lens Luxation (ADAMTS17 Exon 2, Chines	se Shar-Pei Clear
Progressive Retinal Atrophy (SAG)		Clear
Progressive Retinal Atrophy (IFT122 Exon 2	26, Lapponian Herder Variant)	Clear

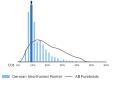
DNA Test Report	Test Date: September 6th, 2023	embk.me/relentlessbdsbreathofthewildrico
OTHER RESULTS		
Progressive Retinal Atrophy, Bardet-B	iedl Syndrome (BBS2 Exon 11, Shetland Sheep	odog Variant) Clear
Progressive Retinal Atrophy, CNGA (CN	NGA1 Exon 9)	Clear
Progressive Retinal Atrophy, crd1 (PDE	E6B, American Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy, crd4/cord	d1 (RPGRIP1)	Clear
Progressive Retinal Atrophy, PRA1 (CN	IGB1)	Clear
Progressive Retinal Atrophy, PRA3 (FA)	M161A)	Clear
Progressive Retinal Atrophy, prcd (PR	CD Exon 1)	Clear
Progressive Retinal Atrophy, rcd1 (PDE	E6B Exon 21, Irish Setter Variant)	Clear
Progressive Retinal Atrophy, rcd3 (PDI	E6A)	Clear
Proportionate Dwarfism (GH1 Exon 5, C	Chihuahua Variant)	Clear
Protein Losing Nephropathy, PLN (NPH	HS1)	Clear
Pyruvate Dehydrogenase Deficiency (I	PDP1, Spaniel Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exo	n 5, Basenji Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exo	n 7, Beagle Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exo	n 10, Terrier Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exo	n 7, Labrador Retriever Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exo	n 7, Pug Variant)	Clear
Raine Syndrome (FAM20C)		Clear
Peristration: American Kennel Club (AKC)	. 	

DNA Test Report	Test Date: September 6th, 2023	embk.me/relentlessbdsbreathofthewildrico
OTHER RESULTS		
Recurrent Inflammatory Pulmona	ary Disease, RIPD (AKNA, Rough Collie Variant)	Clear
Renal Cystadenocarcinoma and	Nodular Dermatofibrosis (FLCN Exon 7)	Clear
Retina Dysplasia and/or Optic Ne	erve Hypoplasia (SIX6 Exon 1, Golden Retriever Variant)	Clear
Sensory Neuropathy (FAM134B, F	Border Collie Variant)	Clear
Severe Combined Immunodeficie	ency, SCID (PRKDC, Terrier Variant)	Clear
Severe Combined Immunodeficie	ency, SCID (RAG1, Wetterhoun Variant)	Clear
Shaking Puppy Syndrome (PLP1,	English Springer Spaniel Variant)	Clear
Shar-Pei Autoinflammatory Disea	ase, SPAID, Shar-Pei Fever (MTBP)	Clear
Skeletal Dysplasia 2, SD2 (COL11	A2, Labrador Retriever Variant)	Clear
Skin Fragility Syndrome (PKP1, C	hesapeake Bay Retriever Variant)	Clear
Spinocerebellar Ataxia (SCN8A, A	Alpine Dachsbracke Variant)	Clear
Spinocerebellar Ataxia with Myo	kymia and/or Seizures (KCNJ10)	Clear
Spongy Degeneration with Cerel	bellar Ataxia 1 (KCNJ10)	Clear
Spongy Degeneration with Cerel	bellar Ataxia 2 (ATP1B2)	Clear
Stargardt Disease (ABCA4 Exon 2	28, Labrador Retriever Variant)	Clear
Succinic Semialdehyde Dehydro	genase Deficiency (ALDH5A1 Exon 7, Saluki Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5	5, American Eskimo Dog Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5	5, Basset Hound Variant)	Clear
Registration: American Kennel Club (AKC)	embark	

DNA Test Report	Test Date: September 6th, 2023	embk.me/relentlessbdsbreathofthewildr
OTHER RESULTS		
O Thrombopathia (RASGRP1 Exon 8, Landsee	er Variant)	Clear
Trapped Neutrophil Syndrome, TNS (VPS13)	3B)	Clear
O Ullrich-like Congenital Muscular Dystrophy	y (COL6A3 Exon 10, Labrador Retriever Va	riant) Clear
O Ullrich-like Congenital Muscular Dystrophy	y (COL6A1 Exon 3, Landseer Variant)	Clear
O Unilateral Deafness and Vestibular Syndro	me (PTPRQ Exon 39, Doberman Pinscher)	Clear
Urate Kidney & Bladder Stones (SLC2A9)		Clear
⊘ Von Willebrand Disease Type I, Type I vWD	(VWF)	Clear
⊘ Von Willebrand Disease Type III, Type III vV	VD (VWF Exon 4, Terrier Variant)	Clear
⊘ Von Willebrand Disease Type III, Type III vV	VD (VWF Intron 16, Nederlandse Kooikerh	ondje Variant) Clear
⊘ Von Willebrand Disease Type III, Type III vV	VD (VWF Exon 7, Shetland Sheepdog Varia	ant) Clear
⊘ X-Linked Hereditary Nephropathy, XLHN (C	OL4A5 Exon 35, Samoyed Variant 2)	Clear
X-Linked Myotubular Myopathy (MTM1, La	orador Retriever Variant)	Clear
⊘ X-Linked Progressive Retinal Atrophy 1, XL	-PRA1 (RPGR)	Clear
⊘ X-linked Severe Combined Immunodeficie	ncy, X-SCID (IL2RG Exon 1, Basset Hound	Variant) Clear
⊘ X-linked Severe Combined Immunodeficie	ncy, X-SCID (IL2RG, Corgi Variant)	Clear
Xanthine Urolithiasis (XDH, Mixed Breed Value)	ariant)	Clear
β-Mannosidosis (MANBA Exon 16, Mixed-f	Breed Variant)	Clear

Test Date: September 6th, 2023

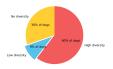
embk.me/relentlessbdsbreathofthewildrico


8%

INBREEDING AND DIVERSITY

CATEGORY

Coefficient Of Inbreeding


Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.

RESULT

Low Diversity

How common is this amount of diversity in purebreds:

High Diversity

How common is this amount of diversity in purebreds:

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.